
C H A P T E R 5

Hardening the
Value Stream

by Bryan Finster

78

M O D E R N C Y B E R S E C U R I T Y

78

CHAPTER 5

Hardening the Value Stream

Bryan Finster

Introduction
Cybersecurity threats are always evolving. What was once the realm
of individuals or gangs breaking into systems for fun or profit has
become national actors waging information warfare. Exploiting simple
vulnerabilities due to insecure coding, poorly secured environments,
outdated policies, etc. has transformed into supply chain attacks where
vulnerabilities are injected into “trustworthy” building blocks upstream
of the systems we are building. We must evolve how we think about
security to counter these threats. The industry is slowly evolving from
legacy Software Development Life Cycle (SDLC) practices towards more
effective value delivery methods.

In the SDLC process, we see the typical stage gates:

• Requirements

• Design

• Coding

• Testing

• Delivery

• Heroics

• Repairing customer relationships

• Resolving crushing defect loads

• Declare tech debt bankruptcy and start over

79

Chapter 5 : Hard en in g th e Va l u e S t ream

79

This has obvious disadvantages for customers and the organization.
It delays feedback and limits quality inspection until development is
complete.

Defining Quality
Quality is far more than “does it function as designed?” Quality means
that it meets the needs of the users. It is stable, available, fit for purpose,
and secure. Quality cannot be inspected into being, it is the outcome
of building quality feedback into every process. To improve outcomes,
we need to change how we think about quality. What does quality
look like? How does it happen? We need to engage everyone in making
quality better. We need to build a working environment and culture
that improves the developer experience so that building functional,
performant, stable, and secure systems is not a constant uphill battle.

There is more movement in the industry to improve outcomes by
improving how value flows through organizations. Quality processes
are evolving from an inspection step to continuous activity and a daily
habit. This is a journey and not something that improves overnight.
While many people new to DevOps understand it to mean “development
and operations working towards common goals”, in reality, DevOps
is about improving that quality feedback. However, in the rush to get
better at improving the functional, performance, and stability aspects of
quality, security is often overlooked. It is still frequently seen as the role
of specialists instead of yet another quality aspect that must be part of the
flow. This has given rise to people using the term “DevSecOps’’ to remind
people that security shouldn’t be left behind. For security to be effective,
we need the same mindset. How do we move security closer to the work
and how do we enable teams by making security easy?

80

M O D E R N C Y B E R S E C U R I T Y

80

Legacy Approach to Security
The typical security process is still aligned to SDLC where security checks
are designed to be done on the finished product. This becomes a handoff
in the flow and is seen as “other than” development and the responsibility
of the Security team. Since these inspections frequently require heavy
manual effort, it’s not uncommon to see these activities implemented as
a one-time or infrequent “security review” that results in the application
receiving a security certification to operate. These usually include policies
for how often recertification is required and that recertification will be
needed if major changes are made to the application. As teams move
from project to product management and from big bang delivery to very
frequent delivery of small changes, this security certification process
becomes security theater.

“Security theater” is the act of going through the motions to “assure
security” without meaningfully increasing how secure we are. When our
process is designed for inspection at the end, it ignores the reality of how
development actually occurs and of the constantly evolving threat profile.
Something that is secure today can be exploited tomorrow and will need
to be resecured. A dependency with no known vulnerabilities can be
the victim of a supply chain attack from another upstream dependency.
When we upgrade the dependency we are now vulnerable. Even if we
don’t upgrade a dependency, a vulnerability can be found later. The one-
time certification process, no matter how extensive, does not mean it will
be safe in the future.

We need continuous verification of security just as we do for every other
quality aspect. To move from security theater to continuous security, we
need to apply the same principles we do to other forms of continuous
testing. What activities are rules based? Automate those. What activities
require human creativity? Those need to be done continuously without
blocking the flow of delivery. This is critical for improving quality. Any
validation or compliance activity that is both manual and required before
every delivery will increase the batch size of every delivery. Large batches
of work hide bigger problems and delay value. This creates an incentive
to not do these activities as frequently so that we can meet organizational
delivery goals.

81

Chapter 5 : Hard en in g th e Va l u e S t ream

81

We can see this happening often with functional testing. If days or
weeks of testing are required for every release, then testing is done on
large changes except when there is an emergency and then the tests are
skipped. For functional testing this can result in regression in one area
while attempting to fix another area. If we have a security process that
incentivizes the same behavior it’s not bad, it’s dangerous. We cannot
afford to leave ourselves exposed by continuing to use methods that
are impossible to execute on daily code changes. Trying to “inspect in
security” after the fact is just as ineffective and more dangerous than
doing the same with other quality aspects. Instead, the focus should be on
how we build security into the flow of delivery.

Fear Driven Development
“We’ll make teams accountable to security. If they cause a
breach, we identify the guilty developer and terminate them.
Now we are DevSecOps!”

~Bryan Finster

In organizations with legacy testing and security practices, it’s common
to find legacy postmortem practices. “Document what happened and
who caused it!” In 2017, Equifax experienced a data breach that exposed
sensitive data for 145 million accounts. When former Equifax CEO
Richard Smith was questioned by Congress, he said it was the fault of
a single person. Smith testified, “Both the human deployment of the
patch and the scanning deployment did not work. The protocol was
followed. The human error was that the individual who’s responsible for
communicating in the organization to apply the patch, did not.”

This, of course, is nonsense. The only time failure is a single person’s
responsibility is when only a single person is involved in delivering
value. The failures were guaranteed by how they did their work, but this
statement gives us an insight into their culture and why a breach was
probably inevitable.

What is the insight we can get from this? Fear Driven Development is

82

M O D E R N C Y B E R S E C U R I T Y

82

the scapegoat culture of “if something bad happens, we will identify the
person responsible and hold them accountable.” This generates a culture
of hiding problems either because we are afraid of being blamed for
something we didn’t do or we did do it but the consequences of trying to
fix it are too high. Lack of trust in the value stream does not yield better
value. Lack of trust means that if someone identifies a problem, the safest
thing to do is ignore it and hope someone else gets blamed. This doesn’t
make us safer.

We need to create an environment of trust so that when failure happens,
and it will, we can use postmortems to identify the failure in the system
instead of finding a scapegoat.

PLATFORMS SHOULD ENABLE BETTER OUTCOMES

We need to make security validation more efficient, more effective,
embedded throughout the entire process, and owned by everyone in the
value stream. We need to make security part of the environment, culture,
and daily work. A well designed platform can help.

What is a platform? A platform is a system created to enable others to
solve problems with less friction. A delivery platform is a system that
allows product teams to focus on what they are delivering and how
to improve the delivered quality without having to build the basic
infrastructure of delivering changes. A well-designed delivery platform
needs to balance reducing friction and toil while ensuring organizational
non-negotiables are met.

First, it needs to make it easier to deliver without expertise on how it
works. This seems obvious, but many platforms require a steep learning
curve and some teams may find it easier to use whatever poor tools
they already know. There may be a temptation to create a “release
management” team that is responsible for building delivery pipelines
for the development teams, but this leads to disincentivizing quality
ownership because it increases the difficulty of improving quality gates.
To get the outcomes we want, the platform must focus on improving the
developer experience to reduce this learning curve so that teams have
total quality ownership.

83

Chapter 5 : Hard en in g th e Va l u e S t ream

83

Next, the platform needs to implement security and compliance rules
to make sure that any non-negotiables cannot be forgotten. Having a
common platform is a major win for security and compliance because
Audit can have a central location to verify those are happening instead of
requiring audits of every pipeline.

PLATFORMS REPLACE CAB

“Change Advisory Boards (CAB) increase the cost of every
change and encourage large delivery batches that are hard to
verify. Because of this, they reduce the quality and increase the
cost of every delivery. They are also ineffective at verifying if
non-negotiables are being met because they are too far from the
work. In one organization, our Compliance team was pushing
for everyone to use CABs to ensure “two eyes on every change”
to prevent bad actors. Bad actors are an important threat vector
to check for, but there was no way for the CAB to verify no bad
code was added to a release. Also, this requirement would halt
our organizational continuous delivery goals, so we needed
to find a platform solution. We asked Compliance, “Is the
requirement that we have a change board or that every change
is reviewed by more than one person?” They informed us that
review was the requirement. We suggested that code review met
that requirement and that our global platform could create a
pipeline gate that would reject changes that did not have a code
review. They were satisfied with that, dropped the requirement
for CAB as long as they had audit ability for the gate, and we
moved forward with our continuous delivery improvement
goals.”

~Bryan Finster

The platform controls must be balanced. It can enforce any policy that
can be described in code but this is a double-edged sword. Implementing
the right controls is important, but if we get carried away and create non-
negotiables that are outside the bounds of security and compliance, then
platform customers will be incentivized to find other solutions. We can

84

M O D E R N C Y B E R S E C U R I T Y

84

use the platform in opinionated ways to encourage broad improvements,
but only if we do it in ways that make the right thing the easy thing to do.
Making the right thing easy and the behaviors we want to improve harder,
but not impossible, enables the organization to migrate to better patterns
without removing the ability for older development efforts from using the
platform at all.

“As part of an effort to make sure that teams were testing
code and writing clean code, the platform team decided to
implement pipeline gates that would block any changes if there
were code style issues or test coverage was below 80%. While
the intent was good, “teams should use good coding practices”,
the result was the platform could no longer support anything
except new development. Applications that had been written
and supported for years could not use the platform without
major refactoring to meet the platform team’s opinions. For
example, builds would break if conditions were nested too
deeply or variables were named with patterns that did not meet
the opinions of the platform team. Additionally, the mandated
code coverage incentivized tests written for coverage instead of
proper testing. These poor tests hide that behavior is not being
properly validated. They are less valuable than not having those
tests at all.”

~Bryan Finster

A platform can be opinionated to act as a lever for improving how the
organization delivers, but if it is too opinionated, it will generate a noisy
quality signal that can reduce the effectiveness of our compliance and
security goals by incentivizing workarounds. We cannot force testing or
security with tools. We need to use the tools to make the right way the
easiest way. We can make less desirable behaviors harder, but making
them impossible will create perverse incentives.

A good platform must be obsessed with its customers, the development
teams who need the platform to deliver better value. The platform team
should not be attempting to keep the teams in line or force them to
behave. They must act as partners who are helping their customers by

85

Chapter 5 : Hard en in g th e Va l u e S t ream

85

making safety, efficiency, and effectiveness easy.

It is important to understand that tools will never create quality though.
Quality is always an iterative process of identifying and testing for known
poor quality. This is a creative process of asking “what can go wrong?”
and testing for that. This applies to security testing just as it does to
functional testing. We cannot test for vulnerabilities we are unaware of.
We can test for known vulnerabilities and use our creativity to predict
others, but the platform alone will never make us safe. Platforms cannot
enforce creativity, only repeatability. We need to design automation that
can provide feedback of poor quality as close to the source of that poor
quality as possible so that the teams can improve their outcomes through
immediate feedback.

Federating Security
Security must be a partnership, not a dictatorship. Just like functional
quality, security will not occur because we are told to be more secure or
follow the rules. It cannot be created with dashboards or tools. Tools can
enable it and data can alert us, but we need a culture of security to make
us safe. This requires education, time, evangelism, and partnership. A
security team should not be seen as the police who are, as one penetration
tester once told me, “investigating the crime of new development.”

Security is a key part of the value stream. Every part of the value stream
needs to focus intensely on one thing: helping each other to optimize
delivered value. If we use legacy security processes and increase the cost
of every change above the value delivered, we are only creating waste. If
we only use our security process for spot checks a few times a year, we are
using security theater. We need to find a better way. At the same time as
we work to federate testing by making it part of development, we need the
same pattern for security. No one wishes to deliver insecure solutions, but
the gap between what teams need to know and what most teams know
is usually large. Security can be a service provider by aligning to specific
value streams, partnering with development teams in that value stream,
and learning the specific challenges they have in their context.

86

M O D E R N C Y B E R S E C U R I T Y

86

 WHAT DOES SECURITY AS A SERVICE LOOK LIKE?

“Our company hired a new security architect and aligned
him to a development area where he could see the problems
developers were having. He saw constant problems with
development machine specifications and system access that
were impeding their ability to deliver. He developed a new plan
for provisioning and network access, worked with the security
team and CTO to get buy-in, and helped the teams solve this
recurring constraint in the value stream.”

~Bryan Finster

By becoming familiar with the teams and their specific delivery
contexts, security solutions can be less generalized, and more trust
can be established between Security and Development. Constant
communication will also help with the continuous education that teams
need to keep current with the threats in their environment. In addition,
the teams can help improve the tools to continuously improve the
efficiency and effectiveness of automated scans.

Security Hobbyists
We want to push testing and security further left in the value stream
and we want them embedded into everything we do. We have a problem
though. This is a new way of working. We shouldn’t simply direct it to be
so and expect it to happen, yet that happens all too frequently. When bad
outcomes occur, the response is “developers don’t care about testing” and
“developers have no interest in security”. Is that really true?

Who decides what developers care about? The leadership in the
organization. Everyone cares about what they are incentivized to care
about. Incentives can be intrinsic, but if the organization has operated
with testing and security as “not development”, even those who care can
get discouraged and fall into line with what the leadership rewards people
for. Now we want them to care and we’ve changed the incentives, but

87

Chapter 5 : Hard en in g th e Va l u e S t ream

87

where is the support they need? We are depending on them to be good at
it, but are we investing in that happening or depending on them to just
pick it up on the job? On-the-job training is fine as long as the majority of
the organization isn’t doing that together at the same time.

“I spent years as a developer before I ever saw a testing
framework. Even then, management did not value testing. “We
are falling behind on our deliverables. We can worry about
testing later!” was an all too common response to the perceived
slowdown from writing “extra code”. I was never taught
effective testing techniques. Instead, I found myself being
“quality curious”. Learning to test became my hobby because I
wanted to understand how to implement a continuous delivery
workflow. I knew that automated validation of delivery fitness
was core to CD, but I had no real experience beyond a few simple
tutorials on unit testing and some coding exercises using test-
driven development. I was left to sort out the good and bad
information about testing on my own. I even fell into the trap
of thinking that 100% test coverage meant that an application
was well tested. It took years of trying and failing to become
competent. I look around and all of the advances I’ve seen from
other developers in testing have been from the same hobbyist
process. I wonder how much further we could have come and
how much better the company outcomes could have been if
our company had invested in growing our knowledge with
dedicated training from reliable sources instead of expecting us
to pick it up at home after hours?”

~Bryan Finster

Stories like this are the norm, not the exception. Even Google went
through a phase of ignoring this problem until they finally assembled
the “Test Mercenaries” and the “Test Certified” program to systematically
upskill their development teams instead of hoping hobbyists learned the
right things and helped spread good practices.

This same problem occurs with security. Developers are generally
expected to be security hobbyists. Guided, self-paced learning can be

88

M O D E R N C Y B E R S E C U R I T Y

88

effective, but self-guided learning paths are seldom effective. Which
information is good or bad? Which is outdated or doesn’t apply to
the current problem? Functional and performance testing are solved
problems. The patterns for effective testing are well understood. While
it requires good resources to understand the best practices, the practices
themselves have been tested over time and only the tools see significant
changes. Security is a whole other ballgame.

Security threats are constantly evolving and even good practices today can
cease to be good practice tomorrow. Aligning everyone to this changing
environment means depending on hobbyists and centralized security
organizations is risky. We shouldn’t put the safety of our organization
at risk by ignoring the need for dedicated training. How can teams help
protect the organization from attacks if they are not trained in how attacks
are executed? Telling teams to follow rules isn’t enough. People need
to understand why vulnerabilities exist. Where do most attacks come
from? Would it surprise them to know they are internal? What motivates
attackers? All of these things are important for teams to understand so that
they not only have the right knowledge, they have the right mindset.

Modern development is a complex activity and organizational success
depends on investing in improving the value stream by investing in
the people who make value flow. We cannot survive on hope, security
hobbyists, and “someday, I’ll read that book.”

Grow a Culture of Security
Ultimately, security—just like every other aspect of quality—is everyone’s
business. If we want more secure outcomes for our consumers, we all
need to live and breathe security. It cannot be the responsibility of a single
group. Instead, it must be a cultural habit. We need to reduce the toil of
staying secure. We need the right tools, implemented in the right way,
that amplify security feedback. Quality is a function of how quickly we
are aware of poor quality. Security is a dimension of quality; security is
not different from functionality, performance, or stability in the need for
rapid feedback.

89

Chapter 5 : Hard en in g th e Va l u e S t ream

89

The one component where security is different from the other quality
aspects is the speed of change. Functional quality is a well-understood
problem. While not everyone may be educated in it, because of the
trend towards depending on hobbyists, the problem itself is just as well
understood as the game of chess. Security threats, on the other hand,
are constantly evolving and growing. With the growth of state actors,
there are more resources than ever directed at finding vulnerabilities.
Ransomware attacks keep criminals coming back because they are
lucrative. How are you preparing your organization to work together to
head off the next attack, while improving outcomes for your consumers,
your bottom line, and everyone in the organization?

90

M O D E R N C Y B E R S E C U R I T Y

90

ABOUT BRYAN FINSTER

I’ve been a practitioner of
continuous delivery and the DevOps
principles that support it for many
years. I’m a pragmatic developer
who focuses on the goal of how we
improve the continuous delivery of
value to the end user every day. I will
do what it takes to remove waste,
improve bottlenecks, and deliver
stable, available, secure, and useful
solutions that can be rapidly evolved
without heroics to improve the lives
of customers and developers.

Deploy more. Sleep better.

Bryan Finster’s LinkedIn

